Sally modules of extended canonical ideals and Goto rings

Naoki Endo

School of Political Science and Economics, Meiji University

日本数学会 2024 年度年会

March 17, 2024

Naoki Endo (Meiji University)

Sally modules and Goto rings

March 17, 2024

1/9

1. Introduction

Question 1.1

Why are there so many Cohen-Macaulay rings which are not Gorenstein?

 $\begin{array}{l} \mathsf{Regular} \Rightarrow \mathsf{Complete} \ \mathsf{Intersection} \Rightarrow \mathsf{Gorenstein} \Rightarrow \mathsf{Cohen-Macaulay} \\ \Rightarrow \mathsf{Buchsbaum} \Rightarrow \mathsf{Generalized} \ \mathsf{Cohen-Macaulay} \ \mathsf{(FLC)} \end{array}$

Problem 1.2

Find new and interesting classes of rings which fill in a gap between Gorenstein and Cohen-Macaulay rings so as to stratify Cohen-Macaulay rings.

We introduce a new concept of CM rings, called Goto rings.

2. Extended canonical ideals

- (A, \mathfrak{m}) a CM local ring with $d = \dim A > 0, \exists K_A, \text{ and } |A/\mathfrak{m}| = \infty$
- $I \subseteq A$ an ideal of A s.t. $I \cong K_A$ (canonical ideal)

Recall that \exists a canonical ideal $\iff A_{\mathfrak{p}}$ is Gorenstein for $\forall \mathfrak{p} \in \operatorname{Min} A$ $\iff Q(A)$ is Gorenstein.

For ideals J and Q with $Q \subseteq J$,

- Q is a reduction of J if $J^{r+1} = QJ^r$ for $\exists r > 0$
- $\operatorname{red}_Q(J) = \min\{r \ge 0 \mid J^{r+1} = QJ^r\}.$

An ideal J is called an extended canonical ideal of A, if J = I + Q for some parameter ideal $Q = (a_1, a_2, \dots, a_d)$ s.t. $a_1 \in I$ and Q is a reduction of J.

- When d = 1, extended canonical ideals = canonical ideals.
- When $d \ge 2$, $J\overline{A}$ is a canonical ideal of $\overline{A} = A/(a_2, a_3, \dots, a_d)$.
- An extended canonical ideal exists.

3. Goto rings

- (A, \mathfrak{m}) a CM local ring with $d = \dim A > 0$, $\exists K_A$, and $|A/\mathfrak{m}| = \infty$
- $I \subsetneq A$ an ideal of A s.t. $I \cong K_A$, and $n \ge 0$ an integer

Definition 3.1 (My proposal)

The ring A is called *n*-Goto, if $\exists Q = (a_1, a_2, \dots, a_d)$ a parameter ideal of A s.t.

(1)
$$a_1 \in I$$

(2) $J^3 = QJ^2$, i.e., $\operatorname{red}_Q(J) \leq 2$ (hence, J is an extended canonical ideal)
(3) $\ell_A(J^2/QJ) = n$
where $J = I + Q$.

- A is 0-Goto \iff A is Gorenstein
- A is 1-Goto \iff A is non-Gorenstein almost Gorenstein
- A is 2-Goto \iff A is 2-almost Gorenstein, provided d = 1

• A is $\ell_A(A/\mathfrak{a})$ -Goto \leftarrow A is generalized Gorenstein with respect to \mathfrak{a} .

As $J^3 = QJ^2$, the sequence a_2, a_3, \ldots, a_d is super-regular with respect to J.

Example 3.2

Let k be a field. For any $\ell \geq 3$, $m \geq n \geq 2$,

$$A = k[[X_1, X_2, \dots, X_{\ell}, V_1, V_2, \dots, V_{\ell-1}]] / I_2 \begin{pmatrix} X_1^n & X_2 + V_1 & \dots & X_{\ell-1} + V_{\ell-2} & X_{\ell} + V_{\ell-1} \\ X_2 & X_3 & \dots & X_{\ell} & X_1^m \end{pmatrix}$$

is an *n*-Goto ring with dim $A = \ell$ and $r(A) = \ell - 1$.

Example 3.3

- (1) The semigroup ring $k[[t^3, t^{3n+1}, t^{3n+2}]]$ is *n*-Goto and is an integral domain.
- (2) The fiber product $k[[t^3, t^{3n+1}, t^{3n+2}]] \times_k k[[t]]$ is *n*-Goto and reduced, but not an integral domain.
- (3) The idealization $k[[t^3, t^{3n+1}, t^{3n+2}]] \ltimes k[[t]]$ is *n*-Goto and is not reduced.

When d = 1, with suitable assumption,

- A is n-Goto \iff $\operatorname{Bl}_{A}(\mathfrak{m}) = \bigcup_{n \ge 0} [\mathfrak{m}^{n} : \mathfrak{m}^{n}]$ is (n-1)-Goto.
- If R is n-Goto and S is 2-Goto, then $A = R \times_k S$ is (n+1)-Goto.

Let $e_i(J)$ be the *i*-th Hilbert coefficients of A with respect to J. Then

- $e_1(J) \ge e_0(J) \ell_A(A/J)$
- $e_1(J) = e_0(J) \ell_A(A/J) \iff J^2 = QJ$, i.e., $red_Q(J) \le 1$.

When this is the case,

▶ $\operatorname{gr}_J(A) = \bigoplus_{i \ge 0} J^i / J^{i+1}$ and $\mathcal{F}(J) = \bigoplus_{i \ge 0} J^i / \mathfrak{m} J^i$ are CM ▶ $\mathcal{R}(J) = \bigoplus_{i \ge 0} J^i$ is CM, provided $d \ge 2$.

As next border,

- Sally characterized the ideal J with $e_1(J) = e_0(J) \ell_A(A/J) + 1$ and $e_2(J) \neq 0$.
- Vasconcelos introduced Sally modules $S_Q(J) = \bigoplus_{i \ge 1} J^{i+1}/JQ^i$, recovered Sally's results, and made further progress in this direction, e.g.,

 $\operatorname{rank} \mathcal{S}_Q(J) = e_1(J) - e_0(J) + \ell_A(A/J).$

• Goto, Nishida, and Ozeki brought fruit to fruition for the theory of Sally modules of rank one.

Whereas they considered general \mathfrak{m} -primary ideals, we concentrate on extended canonical ideals and raise the rank of the Sally modules.

Naoki Endo (Meiji University)

Sally modules and Goto rings

When $J^3 = QJ^2$, since rank $S_Q(J) = e_1(J) - e_0(J) + \ell_A(A/J) = \ell_A(J^2/QJ)$, • A is *n*-Goto $\iff a_1 \in I$, $S_Q(J) = \mathcal{R}(Q) [S_Q(J)]_1$, and rank $S_Q(J) = n$. We set $\mathcal{B} = \mathcal{F}(Q) = \mathcal{R}(Q)/\mathfrak{m}\mathcal{R}(Q) \cong (A/\mathfrak{m})[X_1, X_2, \dots, X_d]$. Then

- A is Gorenstein $\iff S_Q(J) = (0)$
- A is non-Gorenstein almost Gorenstein if and only if

 $S_Q(J) \cong \mathcal{B}(-1)$ (Goto-Takahashi-Taniguchi)

• When d = 1, the ring A is 2-almost Gorenstein if and only if

 $\exists 0 \rightarrow \mathcal{B}(-1) \rightarrow \mathcal{S}_Q(J) \rightarrow \mathcal{B}(-1) \rightarrow 0 \quad (\mathsf{Chau-Goto-Kumashiro-Matsuoka})$

• If A is generalized Gorenstein with respect to a, then

 $S_Q(J) \cong [\mathcal{R}(Q)/\mathfrak{a}\mathcal{R}(Q)](-1).$ (Goto-Isobe-Kumashiro-Taniguchi)

イロト 不得 トイヨト イヨト 二日

Theorem 3.4

Suppose that $n \ge 1$. Then TFAE.

(1) A is an *n*-Goto ring (with respect to Q).

(2) There exist integers $0 \le \ell < n$ and $s_i \ge 1$ $(0 \le i \le \ell)$ s.t. $n = \sum_{i=0}^{\ell} s_i$ and $\mathfrak{m}^{\ell} S_Q(J) \cong \mathcal{B}(-1)^{\oplus s_0}$, and if $\ell > 0$, there exist exact sequences

$$\begin{array}{cccc} 0 \to \mathfrak{m}^{\ell} \mathcal{S}_Q(J) \to & \mathfrak{m}^{\ell-1} \mathcal{S}_Q(J) \to \mathcal{B}(-1)^{\oplus \mathfrak{s}_1} \to 0 \\ 0 \to \mathfrak{m}^{\ell-1} \mathcal{S}_Q(J) \to & \mathfrak{m}^{\ell-2} \mathcal{S}_Q(J) \to \mathcal{B}(-1)^{\oplus \mathfrak{s}_2} \to 0 \\ & \vdots \\ 0 \to \mathfrak{m} \mathcal{S}_Q(J) \to & \mathcal{S}_Q(J) \to \mathcal{B}(-1)^{\oplus \mathfrak{s}_\ell} \to 0. \end{array}$$

Corollary 3.5

Suppose that $n \ge 1$ and A is an *n*-Goto ring (with respect to Q). Then

•
$$e_2(J) = n$$
 if $d \ge 2$

•
$$e_i(J) = 0$$
 for all $3 \le i \le d$, if $d \ge 3$.

Thank you for your attention.

æ

9/9