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1. Introduction

Question 1.1

Why are there so many Cohen-Macaulay rings which are not Gorenstein?

Regular ⇒ Complete Intersection ⇒ Gorenstein ⇒ Cohen-Macaulay
⇒ Buchsbaum ⇒ Generalized Cohen-Macaulay (FLC)

Problem 1.2

Find new and interesting classes of rings which fill in a gap between Gorenstein
and Cohen-Macaulay rings so as to stratify Cohen-Macaulay rings.

We introduce a new concept of CM rings, called Goto rings.

Slogan

Goto rings is a CM local rings admitting “good” canonical ideals.
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2. Extended canonical ideals

(A,m) a CM local ring with d = dimA > 0, ∃KA, and |A/m| = ∞

I ⊊ A an ideal of A s.t. I ∼= KA (canonical ideal)

Recall that ∃ a canonical ideal ⇐⇒ Ap is Gorenstein for ∀ p ∈ MinA

⇐⇒ Q(A) is Gorenstein.

For ideals J and Q with Q ⊆ J,

Q is a reduction of J if J r+1 = QJ r for ∃ r ≥ 0

redQ(J) = min{r ≥ 0 | J r+1 = QJ r}.

An ideal J is called an extended canonical ideal of A, if J = I + Q for some
parameter ideal Q = (a1, a2, . . . , ad) s.t. a1 ∈ I and Q is a reduction of J.

When d = 1, extended canonical ideals = canonical ideals.

When d ≥ 2, JA is a canonical ideal of A = A/(a2, a3, . . . , ad).

An extended canonical ideal exists.
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3. Goto rings

(A,m) a CM local ring with d = dimA > 0, ∃KA, and |A/m| = ∞
I ⊊ A an ideal of A s.t. I ∼= KA, and n ≥ 0 an integer

Definition 3.1 (My proposal)

The ring A is called n-Goto, if ∃Q = (a1, a2, . . . , ad) a parameter ideal of A s.t.

(1) a1 ∈ I

(2) J3 = QJ2, i.e., redQ(J) ≤ 2 (hence, J is an extended canonical ideal)

(3) ℓA(J
2/QJ) = n

where J = I + Q.

A is 0-Goto ⇐⇒ A is Gorenstein

A is 1-Goto ⇐⇒ A is non-Gorenstein almost Gorenstein

A is 2-Goto ⇐⇒ A is 2-almost Gorenstein, provided d = 1

A is ℓA(A/a)-Goto ⇐= A is generalized Gorenstein with respect to a.
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As J3 = QJ2, the sequence a2, a3, . . . , ad is super-regular with respect to J.

Example 3.2

Let k be a field. For any ℓ ≥ 3, m ≥ n ≥ 2,

A = k[[X1,X2, . . . ,Xℓ,V1,V2, . . . ,Vℓ−1]]/I2
(

X n
1 X2+V1 ··· Xℓ−1+Vℓ−2 Xℓ+Vℓ−1

X2 X3 ··· Xℓ Xm
1

)
is an n-Goto ring with dimA = ℓ and r(A) = ℓ− 1.

Example 3.3

(1) The semigroup ring k[[t3, t3n+1, t3n+2]] is n-Goto and is an integral domain.

(2) The fiber product k[[t3, t3n+1, t3n+2]]×k k[[t]] is n-Goto and reduced, but
not an integral domain.

(3) The idealization k[[t3, t3n+1, t3n+2]]⋉ k[[t]] is n-Goto and is not reduced.

When d = 1, with suitable assumption,

A is n-Goto ⇐⇒ BlA(m) =
∪

n≥0 [m
n : mn] is (n − 1)-Goto.

If R is n-Goto and S is 2-Goto, then A = R ×k S is (n + 1)-Goto.
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Let ei (J) be the i-th Hilbert coefficients of A with respect to J. Then

e1(J) ≥ e0(J)− ℓA(A/J)

e1(J) = e0(J)− ℓA(A/J) ⇐⇒ J2 = QJ, i.e., redQ(J) ≤ 1.

When this is the case,

▶ grJ(A) =
⊕

i≥0 J
i/J i+1 and F(J) =

⊕
i≥0 J

i/mJ i are CM
▶ R(J) =

⊕
i≥0 J

i is CM, provided d ≥ 2.

As next border,

Sally characterized the ideal J with e1(J) = e0(J)− ℓA(A/J) + 1 and
e2(J) ̸= 0.

Vasconcelos introduced Sally modules SQ(J) =
⊕

i≥1 J
i+1/JQ i , recovered

Sally’s results, and made further progress in this direction, e.g.,

rankSQ(J) = e1(J)− e0(J) + ℓA(A/J).

Goto, Nishida, and Ozeki brought fruit to fruition for the theory of Sally
modules of rank one.

Whereas they considered general m-primary ideals, we concentrate on extended
canonical ideals and raise the rank of the Sally modules.
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When J3 = QJ2, since rankSQ(J) = e1(J)− e0(J) + ℓA(A/J) = ℓA(J
2/QJ),

A is n-Goto ⇐⇒ a1 ∈ I , SQ(J) = R(Q) [SQ(J)]1, and rankSQ(J) = n.

We set B = F(Q) = R(Q)/mR(Q) ∼= (A/m)[X1,X2, . . . ,Xd ]. Then

A is Gorenstein ⇐⇒ SQ(J) = (0)

A is non-Gorenstein almost Gorenstein if and only if

SQ(J) ∼= B(−1) (Goto-Takahashi-Taniguchi)

When d = 1, the ring A is 2-almost Gorenstein if and only if

∃ 0 → B(−1) → SQ(J) → B(−1) → 0 (Chau-Goto-Kumashiro-Matsuoka)

If A is generalized Gorenstein with respect to a, then

SQ(J) ∼= [R(Q)/aR(Q)] (−1). (Goto-Isobe-Kumashiro-Taniguchi)
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Theorem 3.4

Suppose that n ≥ 1. Then TFAE.

(1) A is an n-Goto ring (with respect to Q).

(2) There exist integers 0 ≤ ℓ < n and si ≥ 1 (0 ≤ i ≤ ℓ) s.t. n =
∑ℓ

i=0 si and
mℓSQ(J) ∼= B(−1)⊕s0 , and if ℓ > 0, there exist exact sequences

0 → mℓSQ(J) → mℓ−1SQ(J) → B(−1)⊕s1 → 0

0 → mℓ−1SQ(J) → mℓ−2SQ(J) → B(−1)⊕s2 → 0

...

0 → mSQ(J) → SQ(J) → B(−1)⊕sℓ → 0.

Corollary 3.5

Suppose that n ≥ 1 and A is an n-Goto ring (with respect to Q). Then

e2(J) = n if d ≥ 2

ei (J) = 0 for all 3 ≤ i ≤ d, if d ≥ 3.
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Thank you for your attention.
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